为什么要进行热设计 ?
温度对元器件的影响:一般而言,温度升高电阻阻值降低;高温会降低电容器的使用寿命;高温会使变压器、扼流圈绝缘材料的性能下降,一般变压器、扼流圈的允许温度要低于 95C;温度过高还会造成焊点合金结构的变化—
IMC 增厚,焊点变脆,机械强度降低;结温的升高会使晶体管的电流放大倍数迅速增加,导致集电极电流增加,又使结温进一步升高,最终导致组件失效。
控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过标准及规范所规定的温度。允许温度的计算应以元器件的应力分析为基础,并且与产品的可靠性要求以及分配给每一个元器件的失效率相一致。
LED超薄灯箱散热设计一般按流体动力学软件仿真和做基础设计。
流体流动的阻力:由于流体的粘性和固体边界的影响,使流体在流动过程中受到阻力,这个阻力称为流动阻力,可分为沿程阻力和局部阻力两种。
沿程阻力:在边界沿程不变的区域,流体沿全部流程的摩檫阻力。
局部阻力:在边界急剧变化的区域,如断面突然扩大或突然缩小、弯头等局部位置,是流体的流体状态发生急剧变化而产生的流动阻力。
通常LED是采用散热器自然散热,散热器的设计分为三步:
根据相关约束条件设计处轮廓图;
根据散热器的相关设计准则对散热器齿厚、齿的形状、齿间距、基板厚度进行优化;
进行校核计算;
考虑到自然冷却时温度边界层较厚,如果齿间距太小,两个齿的热边界层易交叉,影响齿表面的对流,所以一般情况下,建议自然冷却的散热器齿间距大于12mm,
如果散热器齿高低于10mm,可按齿间距≥1.2倍齿高来确定散热器的齿间距。建议散热齿表面不加波纹齿。
自然对流的散热器表面一般采用发黑处理,以增大散热表面的辐射系数,强化辐射换热。由于自然对流达到热平衡的时间较长,所以自然对流散热器的基板及齿厚应足够,以抗击瞬时热负荷的冲击,建议大于5mm
以上。这些都是设计节能LED超薄灯箱的重要因素,所以在LED超薄灯箱研发生产过程中就要考虑到。